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Overview



Generalized Gaussian processes

First, a tangent:

Does the term Gaussian process encompass Gaussian random
field?

Yes: Zilber and Katzfuss; Gelfand (2016), Sampson and Guttorp
(1992), Fuentes (2005), Stein (1999)...

No: Wikipedia, Rozanov (1982), Lindgren (2012)...



Generalized Gaussian processes

How should we model dependent non-Gaussian data?
Spatial generalized linear mixed models or generalized GPs:
e |atent Gaussian process

¢ non-Gaussian likelihood from exponential family



Generalized Gaussian processes

In practice:

Working with GGPs may be expensive (cost grows cubically with
data size), so use methods like:

e MCMC
e Expectation propagation
® Variational methods

e Laplace approximations



Gaussian process
approximations

Ways to decrease computational cost:

® |Low rank approximations

e Enforcing sparsity in covariance/precision matrices

® Vecchia approximations



Generalized Gaussian process
approximations

Extend to non-Gaussian data by combining
e |[ow-rank GP

e Approximation of non-Gaussian likelihood

For example, INLA-SPDE approach:
e Sparse-precision approximation of a GP with Matérn covariance

e [aplace approximation for marginal posteriors conditioning on
non-Gaussian observations

... cost still O(n*?) or even O(n?) in higher dimensions!
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Vecchia-Laplace approximations

Can we achieve an approximation with linearly scaling cost!?

The authors propose to combine
® Vecchia approximation for latent GP

e |aplace approximation for non-Gaussian likelihood



Review



Generalized Gaussian processes

Zi 'Y ~ina 84z | yi)
y(-) ~ GP(u, K)

z  conditionally independent observations at locations in @ C R

y latent GP
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Generalized Gaussian processes

Ny | B, K)H?zlgi(zi | )
p(z)

piy|z)=

Want to estimate the posterior of y...
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Laplace approximation

Ny | B, K)H?zlgi(zi | )
p(z)

piy|z)=

May be difficult to deal with p(z)... estimate by assuming posterior
is Gaussian with mean and precision equal to the mode and negative

Hessian at the mode of log p(y | z)

... requires optimization to find mode of log p(y | z)!
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Laplace approximation

Newton-Raphson optimization turns out to be equivalent to
computing posterior mean of y with Gaussian pseudo-data.

That is, although our data is non-Gaussian, we can find the true
posterior mean by equating our observations with Gaussian
pseudo-data.
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Pseudo-data

distribution | likelihood g(z|y) pseudo-data ¢, | pseudo-variance d(y)
Gaussian N(y, %) 2 T
Bernoulli B(logit(y)) | v+ (lt—f,y)z(z — 1) (1+eY)(1+eY)
Poisson P(eY) y+eY(z—eY) e Y
Gamma G(a,ae™Y) y+ (1 —2"1eY) aze Y

Table 1: Examples of popular likelihoods, together with the Gaussian pseudo-data and pseudo-variances
implied by the Laplace approximation. The non-canonical logarithmic link function is used for the Gamma
likelihood to ensure that the second parameter, ae™Y, is positive.
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Pseudo-data

Logistic Poisson

(oo} O o]

Location Location

O Data e Pseudo data —— Pseudo Var —— Latent Post --- Post Cl

Figure 1: Pseudo-data t, plus or minus half the standard deviation of the pseudo-noise for simulated data
z in one spatial dimension, along with the latent posterior mode « plus or minus half the posterior standard
deviation. Note that the data are on a different scale than the pseudo-data due to the link function.
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Vecchia approximation

y ~ N (u,K) vector of GP realizations
t|y~ A (y,D) pseudo data (diagonal covariance)

Then,let X =y U t and apply the approximation
n 2n
p(x) = HP(X,' | X 1) & HP(X,' | X))
i=1 i=1

for some conditioning set c(i). Still need to choose this set wisely!
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Conditioning sets

Interweaved (IVV) ordering:

_ T
X =Vt -5V 1)

p w(X) = Hp(ti | yop(y; | Yq,) t%(i))
i=1
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Conditioning sets

If x; = t;, we only condition on y;, because D is diagonal and therefore ¢; is conditionally
independent of all other variables in y and t given y;. If z; = y;, we condition on y, (;y and
tq.(i), where g(%) = gy(2)Ug:(%) is the conditioning index vector consisting of the indices of the
nearest m locations previous to 7 in the ordering. For splitting ¢(¢) into ¢,(z) and g,(¢), we
attempt to maximize g,(7) while ensuring linear complexity (Katzfuss and Guinness, 2019).
Specifically, for i = 1,...,n, we set q,(¢) = (k;) U (¢,(ki) Nq(%)), where k; € g(¢) is the index
whose latent-conditioning set has the most overlap with ¢(7): ki = argmax;cqq) |gy(5) N
q(7)|, choosing the closest k; in space to s; in case of a tie. In one-dimensional space with
coordinate ordering, this results in ¢,(i) = ¢(¢) = (max(l,2 —m),...,i — 1) and ¢,(i) =
(. In higher-dimensional space, we may not be able to condition entirely on y, so the
remaining conditioning indices are assigned to ¢;(¢) = q(¢) \ ¢,(¢). These conditioning rules
guarantee that U and V are both highly sparse with at most m nonzero off-diagonal elements
per column. Katzfuss and Guinness (2019) showed that these matrices, and the resulting
posterior mean and precision matrix, can be obtained in O(nm?) time.
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Conditioning sets

Interweaved (IWV) ordering:

_ T
X =Vt -V by)

n
p w(X) = Hp(ti | yop(y; | Yq,3i tqz(i))
i=1

Response First (RF) ordering

_ T
X =t b)s V(s oeer V)

n
P rr(X) = Hp(t,-)p(y,- | Yq,i) tQt(i))
i=1
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Vecchia-Laplace approximation

y ~ N, (u,K) vector of GP realizations

t|y~ 4, (y,D) pseudo data based on observations z

Apply Vecchia approximation to joint distribution of X =y U t and

then compute posterior mean of y given t... yielding mode of
posterior of y

Next, apply Laplace approximation
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Parameter inference

Given unknown model parameters @, need to perform inference
based on integrated likelihood:

ZO)=p|0)=|pz|y,Opy|0)dy

Again, use Laplace approximation of integrated likelihood:

p(zZ|y)
L) ~ p(t
0) p()xp(t v

evaluated at the posterior mode!
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Parameter Estimation

Approximation of integrated likelihood is equivalent to
approximation of posterior p(0 | z) with flat priors.

Still essentially an ML-based approach
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Prediction

Predictions at unobserved locations can be made by simply
appending the corresponding random variables to get

X=tuyuy*
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Approximation properties

How can we assess the quality of the approximation?
Two sources of errors: Vecchia and Laplace approximations.
Authors use simulation to show accuracy.

Questions:

* Does the choice of likelihood affect quality of Laplace
approximation?

* How to choose size of conditioning set for Vecchia
approximation?
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Simulations

Simulate mean zero GP with Matern covariance on a unit square
grid, and then conditionally generate observation data.

Compare with Laplace approximation w/o Vecchia and
Hamiltonian Monte Carlo
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RRMSE
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Figure 2: RRMSE versus time (on a log scale) for Bernoulli data of size n = 625. Laplace is run once until

convergence. For VL, we considered m € {1, 5, 10,20,40}. The number of HMC iterations varies from 5,100
to 300,000 in increments of 100, with the first 5,000 considered burn-in.
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VL-IWV:

Vecchia-

Comparing accuracy

Laplace approximation based on interweaved ordering for

finding conditioning sets

LowRan

<

Modified predictive process approximation (equivalent to Vecchia-
Laplace except conditioning based on maxmin ordered latent variables)

Laplace:

Laplace approximation without Vecchia (computationally expensive)
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Run time

Algorithm -e- Laplace -4 VL -&- LowRank

Gaussian Logistic Poisson Gamma
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Figure 3: For sample size n between 250 and 16,000, computing time for the Laplace approximation based
on Newton-Raphson, compared to VL and LowRank using Algorithm 1 with m = 10
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RRMSE

Accuracy in 1D
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(a) RMSE (relative to Laplace)
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Accuracy in ID
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(b) Difference in log score (relative to Laplace)
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RRMSE

Accuracy in 2D
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dLS

Accuracy in 2D
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Applications

Authors apply their method to water vapor data (continuous and
positive).

z(s;) | y(s;) ~;,q E(a,ae _y(si))

On 1354 x 2030 = 2,746,820 grid of |km pixels. For analysis, the
authors used 500000 data points.
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Applications

Test Data

Observed Training Data
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(b) Zooming into the white square shown in Panel (a)
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Discussion

Key idea is to combine Vecchia approximation for latent GP and

Laplace approximation for posterior marginals of latent variables
given non-Gaussian data.

Vecchia approximation relies heavily on the ordering of the model

variables and the conditioning set. These choices can dramatically
affect runtime and accuracy.

Code available in the R package GPVecchia.
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Discussion

Use integrated nested Laplace approximation (INLA) to improve
marginal posteriors

Other ideas/questions!?
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