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Overview



Generalized Gaussian processes

First, a tangent:

Does the term Gaussian process encompass Gaussian random 
field? 

Yes:     Zilber and Katzfuss; Gelfand (2016), Sampson and Guttorp 
(1992), Fuentes (2005), Stein (1999)…

No:     Wikipedia, Rozanov (1982), Lindgren (2012)…
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Generalized Gaussian processes

How should we model dependent non-Gaussian data?

Spatial generalized linear mixed models or generalized GPs:

• Latent Gaussian process

• non-Gaussian likelihood from exponential family
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Generalized Gaussian processes

In practice:

Working with GGPs may be expensive (cost grows cubically with 
data size), so use methods like:

• MCMC

• Expectation propagation

• Variational methods

• Laplace approximations
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Gaussian process 
approximations

Ways to decrease computational cost:

• Low rank approximations

• Enforcing sparsity in covariance/precision matrices

• Vecchia approximations
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Generalized Gaussian process 
approximations

Extend to non-Gaussian data by combining

• Low-rank GP

• Approximation of non-Gaussian likelihood

For example, INLA-SPDE approach:

• Sparse-precision approximation of a GP with Matérn covariance

• Laplace approximation for marginal posteriors conditioning on 
non-Gaussian observations

…. cost still  or even  in higher dimensions!𝒪(n3/2) 𝒪(n2)
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Vecchia-Laplace approximations

Can we achieve an approximation with linearly scaling cost?

The authors propose to combine

• Vecchia approximation for latent GP

• Laplace approximation for non-Gaussian likelihood
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Review



Generalized Gaussian processes
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zi ∣ y ∼ind. gi(zi ∣ yi)

      conditionally independent observations at locations in 

      latent GP

z 𝒟 ⊂ ℝd

y

y( ⋅ ) ∼ GP(μ, K)



Generalized Gaussian processes
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Want to estimate the posterior of … y

p(y ∣ z) =
𝒩n(y ∣ μ, K)∏n

i=1 gi(zi ∣ yi)

p(z)



Laplace approximation
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p(y ∣ z) =
𝒩n(y ∣ μ, K)∏n

i=1 gi(zi ∣ yi)

p(z)

May be difficult to deal with … estimate by assuming posterior

is Gaussian with mean and precision equal to the mode and negative

Hessian at the mode of 

… requires optimization to find mode of !

p(z)

log p(y ∣ z)

log p(y ∣ z)



Laplace approximation

13

Newton-Raphson optimization turns out to be equivalent to 
computing posterior mean of  with Gaussian pseudo-data.

That is, although our data is non-Gaussian, we can find the true 
posterior mean by equating our observations with Gaussian 
pseudo-data.

!

y



Pseudo-data
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Pseudo-data
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Vecchia approximation
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    vector of GP realizations

    pseudo data (diagonal covariance)

Then, let  and apply the approximation

for some conditioning set . Still need to choose this set wisely!

y ∼ 𝒩n(μ, K)

t ∣ y ∼ 𝒩n(y, D)

x = y ∪ t

p(x) =
n

∏
i=1

p(xi ∣ xi:i−1) ≈
2n

∏
i=1

p(xi ∣ xc(i))

c(i)



Conditioning sets
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Interweaved (IW) ordering:

x = (y1, t1, …, yn, tn)T

̂p IW(x) =
n

∏
i=1

p(ti ∣ yi)p(yi ∣ yqy(i), tqt(i))



Conditioning sets
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Conditioning sets

19

Interweaved (IW) ordering:

Response First (RF) ordering

x = (y1, t1, …, yn, tn)T

̂p IW(x) =
n

∏
i=1

p(ti ∣ yi)p(yi ∣ yqy(i), tqt(i))

x = (t1, …, tn, y1, …, yn)T

̂p RF(x) =
n

∏
i=1

p(ti)p(yi ∣ yqy(i), tqt(i))



Vecchia-Laplace approximation

    vector of GP realizations

    pseudo data based on observations 

Apply Vecchia approximation to joint distribution of  and 
then compute posterior mean of  given … yielding mode of 
posterior of 

Next, apply Laplace approximation

y ∼ 𝒩n(μ, K)

t ∣ y ∼ 𝒩n(y, D) z

x = y ∪ t
y t

y
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Parameter inference

Given unknown model parameters , need to perform inference 
based on integrated likelihood:

 

Again, use Laplace approximation of integrated likelihood:

evaluated at the posterior mode!

θ

ℒ(θ) = p(z ∣ θ) = ∫ p(z ∣ y, θ)p(y ∣ θ)dy

ℒ(θ) ≈ p(t) ×
p(z ∣ y)
p(t ∣ y)
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Parameter Estimation

Approximation of integrated likelihood is equivalent to 
approximation of posterior  with flat priors.

Still essentially an ML-based approach

p(θ ∣ z)
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Prediction

Predictions at unobserved locations can be made by simply 
appending the corresponding random variables to get 
x̃ = t ∪ y ∪ y*
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Approximation properties
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How can we assess the quality of the approximation? 

Two sources of errors:  Vecchia and Laplace approximations. 

Authors use simulation to show accuracy.

Questions:

•  Does the choice of likelihood affect quality of Laplace 
approximation?

• How to choose size of conditioning set for Vecchia 
approximation?



Simulations

Simulate mean zero GP with Matérn covariance on a unit square 
grid, and then conditionally generate observation data.

Compare with Laplace approximation w/o Vecchia and 
Hamiltonian Monte Carlo
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RRMSE
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Comparing accuracy

27

VL-IW:

Vecchia-Laplace approximation based on interweaved ordering for 
finding conditioning sets

LowRank

Modified predictive process approximation (equivalent to Vecchia-
Laplace except conditioning based on maxmin ordered latent variables)

Laplace:

Laplace approximation without Vecchia (computationally expensive)



Run time
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Accuracy in 1D
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Accuracy in 1D

30



Accuracy in 2D
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Accuracy in 2D
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Applications

Authors apply their method to water vapor data (continuous and 
positive). 

On 1354 × 2030 = 2,746,820 grid of 1km pixels.  For analysis, the 
authors used 500000 data points.

z(si) ∣ y(si) ∼ind 𝒢(a, ae−y(si))
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Applications

Authors apply their method to water vapor data (continuous and 
positive). 

z(si) ∣ y(si) ∼ind 𝒢(a, ae−y(si))
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Applications
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Discussion

Key idea is to combine Vecchia approximation for latent GP and 
Laplace approximation for posterior marginals of latent variables 
given non-Gaussian data.

Vecchia approximation relies heavily on the ordering of the model 
variables and the conditioning set. These choices can dramatically 
affect runtime and accuracy.

Code available in the R package GPVecchia.
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Discussion

Use integrated nested Laplace approximation (INLA) to improve 
marginal posteriors

Other ideas/questions?
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